Try  free

Understanding Neural Networks and Machine Learning

Learn about the structure and function of neural networks and their role in machine learning

Click here to study and view all flashcards!
<div style='margin-bottom: 20px;'> <div style="margin-bottom: 10px; background-color: #f2f2f2; border-radius: 1rem; padding: 10px 20px;"> <h2 style="font-weight: bold; margin-bottom: 3px; font-size: 1.5rem;">Why is it surprising that the brain can recognize low-resolution digits?</h2> <p style="font-weight: normal; font-size: 1.2rem;">Because the specific values of each pixel vary greatly between images.</p> </div> <div style="margin-bottom: 10px; background-color: #f2f2f2; border-radius: 1rem; padding: 10px 20px;"> <h2 style="font-weight: bold; margin-bottom: 3px; font-size: 1.5rem;">What function is applied to each component of the resulting vector in the neural network model described?</h2> <p style="font-weight: normal; font-size: 1.2rem;">The sigmoid function is applied to each specific component of the resulting vector.</p> </div> <div style="margin-bottom: 10px; background-color: #f2f2f2; border-radius: 1rem; padding: 10px 20px;"> <h2 style="font-weight: bold; margin-bottom: 3px; font-size: 1.5rem;">What does the activation number inside a neuron represent?</h2> <p style="font-weight: normal; font-size: 1.2rem;">The grayscale value of the corresponding pixel.</p> </div> <div style="margin-bottom: 10px; background-color: #f2f2f2; border-radius: 1rem; padding: 10px 20px;"> <h2 style="font-weight: bold; margin-bottom: 3px; font-size: 1.5rem;">What is the purpose of the hidden layers in a neural network?</h2> <p style="font-weight: normal; font-size: 1.2rem;">To handle the process of recognizing digits.</p> </div> <div style="margin-bottom: 10px; background-color: #f2f2f2; border-radius: 1rem; padding: 10px 20px;"> <h2 style="font-weight: bold; margin-bottom: 3px; font-size: 1.5rem;">Why is a good grasp of linear algebra important in machine learning?</h2> <p style="font-weight: normal; font-size: 1.2rem;">Much of machine learning comes down to having a good grasp of linear algebra.</p> </div> <div style="margin-bottom: 10px; background-color: #f2f2f2; border-radius: 1rem; padding: 10px 20px;"> <h2 style="font-weight: bold; margin-bottom: 3px; font-size: 1.5rem;">What is the resolution of the image used to recognize the digit '3'?</h2> <p style="font-weight: normal; font-size: 1.2rem;">28x28 pixels</p> </div> <div style="margin-bottom: 10px; background-color: #f2f2f2; border-radius: 1rem; padding: 10px 20px;"> <h2 style="font-weight: bold; margin-bottom: 3px; font-size: 1.5rem;">What does taking the weighted sum of the activations in the first layer represent in the context of matrix vector multiplication?</h2> <p style="font-weight: normal; font-size: 1.2rem;">It corresponds to one of the terms in the matrix vector product.</p> </div> <div style="margin-bottom: 10px; background-color: #f2f2f2; border-radius: 1rem; padding: 10px 20px;"> <h2 style="font-weight: bold; margin-bottom: 3px; font-size: 1.5rem;">How should the activations from one layer be organized for processing?</h2> <p style="font-weight: normal; font-size: 1.2rem;">The activations from one layer should be organized into a column as a vector.</p> </div> <div style="margin-bottom: 10px; background-color: #f2f2f2; border-radius: 1rem; padding: 10px 20px;"> <h2 style="font-weight: bold; margin-bottom: 3px; font-size: 1.5rem;">What becomes difficult when trying to program a computer to recognize digits from a 28x28 pixel grid?</h2> <p style="font-weight: normal; font-size: 1.2rem;">The task goes from trivial to dauntingly difficult.</p> </div> <div style="margin-bottom: 10px; background-color: #f2f2f2; border-radius: 1rem; padding: 10px 20px;"> <h2 style="font-weight: bold; margin-bottom: 3px; font-size: 1.5rem;">What range do activations in this network aim to fall within?</h2> <p style="font-weight: normal; font-size: 1.2rem;">Between 0 and 1.</p> </div> <div style="margin-bottom: 10px; background-color: #f2f2f2; border-radius: 1rem; padding: 10px 20px;"> <h2 style="font-weight: bold; margin-bottom: 3px; font-size: 1.5rem;">What is the purpose of having negative weights associated with the surrounding pixels?</h2> <p style="font-weight: normal; font-size: 1.2rem;">To ensure the sum is largest when the middle pixels are bright but the surrounding pixels are darker.</p> </div> <div style="margin-bottom: 10px; background-color: #f2f2f2; border-radius: 1rem; padding: 10px 20px;"> <h2 style="font-weight: bold; margin-bottom: 3px; font-size: 1.5rem;">What does the visual cortex do when recognizing digits?</h2> <p style="font-weight: normal; font-size: 1.2rem;">It resolves images as representing the same idea while recognizing other images as distinct ideas.</p> </div> <div style="margin-bottom: 10px; background-color: #f2f2f2; border-radius: 1rem; padding: 10px 20px;"> <h2 style="font-weight: bold; margin-bottom: 3px; font-size: 1.5rem;">What is the goal of introducing neural networks in the context provided?</h2> <p style="font-weight: normal; font-size: 1.2rem;">To show what a neural network is and help visualize its function, assuming no background knowledge.</p> </div> <div style="margin-bottom: 10px; background-color: #f2f2f2; border-radius: 1rem; padding: 10px 20px;"> <h2 style="font-weight: bold; margin-bottom: 3px; font-size: 1.5rem;">How many neurons correspond to the 28x28 pixels of the input image?</h2> <p style="font-weight: normal; font-size: 1.2rem;">784 neurons</p> </div> <div style="margin-bottom: 10px; background-color: #f2f2f2; border-radius: 1rem; padding: 10px 20px;"> <h2 style="font-weight: bold; margin-bottom: 3px; font-size: 1.5rem;">Which function is commonly used to squish the real number line into the range between 0 and 1?</h2> <p style="font-weight: normal; font-size: 1.2rem;">The sigmoid function.</p> </div> <div style="margin-bottom: 10px; background-color: #f2f2f2; border-radius: 1rem; padding: 10px 20px;"> <h2 style="font-weight: bold; margin-bottom: 3px; font-size: 1.5rem;">What analogy is used to describe how activations in one layer determine the activations of the next layer?</h2> <p style="font-weight: normal; font-size: 1.2rem;">The analogy of biological networks of neurons where some groups of neurons firing cause others to fire.</p> </div> <div style="margin-bottom: 10px; background-color: #f2f2f2; border-radius: 1rem; padding: 10px 20px;"> <h2 style="font-weight: bold; margin-bottom: 3px; font-size: 1.5rem;">How are the weights between layers in a neural network organized?</h2> <p style="font-weight: normal; font-size: 1.2rem;">The weights are organized as a matrix, where each row corresponds to the connections between one layer and a particular neuron in the next layer.</p> </div> <div style="margin-bottom: 10px; background-color: #f2f2f2; border-radius: 1rem; padding: 10px 20px;"> <h2 style="font-weight: bold; margin-bottom: 3px; font-size: 1.5rem;">What classic example is used to introduce neural networks?</h2> <p style="font-weight: normal; font-size: 1.2rem;">Recognizing handwritten digits.</p> </div> <div style="margin-bottom: 10px; background-color: #f2f2f2; border-radius: 1rem; padding: 10px 20px;"> <h2 style="font-weight: bold; margin-bottom: 3px; font-size: 1.5rem;">What does the activation of a neuron measure?</h2> <p style="font-weight: normal; font-size: 1.2rem;">How positive the relevant weighted sum is.</p> </div> <div style="margin-bottom: 10px; background-color: #f2f2f2; border-radius: 1rem; padding: 10px 20px;"> <h2 style="font-weight: bold; margin-bottom: 3px; font-size: 1.5rem;">How many neurons are in the last layer of the network described, and what do they represent?</h2> <p style="font-weight: normal; font-size: 1.2rem;">10 neurons, each representing one of the digits.</p> </div> <div style="margin-bottom: 10px; background-color: #f2f2f2; border-radius: 1rem; padding: 10px 20px;"> <h2 style="font-weight: bold; margin-bottom: 3px; font-size: 1.5rem;">What is added to the matrix vector product to include the bias in the neural network computation?</h2> <p style="font-weight: normal; font-size: 1.2rem;">A vector containing all the biases is added to the previous matrix vector product.</p> </div> <div style="margin-bottom: 10px; background-color: #f2f2f2; border-radius: 1rem; padding: 10px 20px;"> <h2 style="font-weight: bold; margin-bottom: 3px; font-size: 1.5rem;">Why do many libraries optimize matrix multiplication in the context of neural networks?</h2> <p style="font-weight: normal; font-size: 1.2rem;">Because it makes the relevant code both a lot simpler and a lot faster.</p> </div> <div style="margin-bottom: 10px; background-color: #f2f2f2; border-radius: 1rem; padding: 10px 20px;"> <h2 style="font-weight: bold; margin-bottom: 3px; font-size: 1.5rem;">What is the purpose of adding a bias to the weighted sum?</h2> <p style="font-weight: normal; font-size: 1.2rem;">To determine how high the weighted sum needs to be before the neuron becomes meaningfully active.</p> </div> <div style="margin-bottom: 10px; background-color: #f2f2f2; border-radius: 1rem; padding: 10px 20px;"> <h2 style="font-weight: bold; margin-bottom: 3px; font-size: 1.5rem;">How does representing weight matrices and vectors as symbols benefit the communication of activations transition?</h2> <p style="font-weight: normal; font-size: 1.2rem;">It allows for the full transition of activations from one layer to the next to be communicated in an extremely tight and neat little expression.</p> </div> <div style="margin-bottom: 10px; background-color: #f2f2f2; border-radius: 1rem; padding: 10px 20px;"> <h2 style="font-weight: bold; margin-bottom: 3px; font-size: 1.5rem;">What is the best hope for the function of the middle layers in recognizing digits?</h2> <p style="font-weight: normal; font-size: 1.2rem;">That each neuron in the second to last layer corresponds with one of the subcomponents of digits.</p> </div> <div style="margin-bottom: 10px; background-color: #f2f2f2; border-radius: 1rem; padding: 10px 20px;"> <h2 style="font-weight: bold; margin-bottom: 3px; font-size: 1.5rem;">What is the total number of weights and biases in the network?</h2> <p style="font-weight: normal; font-size: 1.2rem;">Almost exactly 13,000.</p> </div> <div style="margin-bottom: 10px; background-color: #f2f2f2; border-radius: 1rem; padding: 10px 20px;"> <h2 style="font-weight: bold; margin-bottom: 3px; font-size: 1.5rem;">How might the network recognize a digit like '9'?</h2> <p style="font-weight: normal; font-size: 1.2rem;">By lighting up neurons associated with specific little edges that form a loop up top and a long vertical line.</p> </div> <div style="margin-bottom: 10px; background-color: #f2f2f2; border-radius: 1rem; padding: 10px 20px;"> <h2 style="font-weight: bold; margin-bottom: 3px; font-size: 1.5rem;">How can understanding weights and biases help when the network doesn't perform as expected?</h2> <p style="font-weight: normal; font-size: 1.2rem;">It provides a starting place for experimenting with changes to the structure to improve.</p> </div> <div style="margin-bottom: 10px; background-color: #f2f2f2; border-radius: 1rem; padding: 10px 20px;"> <h2 style="font-weight: bold; margin-bottom: 3px; font-size: 1.5rem;">What does each neuron in a neural network functionally represent?</h2> <p style="font-weight: normal; font-size: 1.2rem;">Each neuron represents a function that takes in the outputs of all the neurons in the previous layer and outputs a number between 0 and 1.</p> </div> <div style="margin-bottom: 10px; background-color: #f2f2f2; border-radius: 1rem; padding: 10px 20px;"> <h2 style="font-weight: bold; margin-bottom: 3px; font-size: 1.5rem;">What does it mean when the network is described as having been 'trained' to recognize digits?</h2> <p style="font-weight: normal; font-size: 1.2rem;">It means the network can process an image and output the digit it represents based on the pattern of activations.</p> </div> <div style="margin-bottom: 10px; background-color: #f2f2f2; border-radius: 1rem; padding: 10px 20px;"> <h2 style="font-weight: bold; margin-bottom: 3px; font-size: 1.5rem;">How many hidden layers and neurons per layer are chosen for the network, and why?</h2> <p style="font-weight: normal; font-size: 1.2rem;">Two hidden layers with 16 neurons each, chosen for motivational and visual clarity reasons.</p> </div> <div style="margin-bottom: 10px; background-color: #f2f2f2; border-radius: 1rem; padding: 10px 20px;"> <h2 style="font-weight: bold; margin-bottom: 3px; font-size: 1.5rem;">What makes the neural network function described as 'absurdly complicated'?</h2> <p style="font-weight: normal; font-size: 1.2rem;">It involves 13,000 parameters in the forms of weights and biases, and iterates many matrix vector products and the sigmoid function.</p> </div> <div style="margin-bottom: 10px; background-color: #f2f2f2; border-radius: 1rem; padding: 10px 20px;"> <h2 style="font-weight: bold; margin-bottom: 3px; font-size: 1.5rem;">Why might manually setting weights and biases be considered both fun and horrifying?</h2> <p style="font-weight: normal; font-size: 1.2rem;">Because it involves purposefully tweaking the numbers to achieve desired outcomes, which is a meticulous and daunting task.</p> </div> <div style="margin-bottom: 10px; background-color: #f2f2f2; border-radius: 1rem; padding: 10px 20px;"> <h2 style="font-weight: bold; margin-bottom: 3px; font-size: 1.5rem;">What role do weights play in determining how one layer influences the next in a neural network?</h2> <p style="font-weight: normal; font-size: 1.2rem;">Weights determine the influence of activations from one layer on the activations of the next layer.</p> </div> <div style="margin-bottom: 10px; background-color: #f2f2f2; border-radius: 1rem; padding: 10px 20px;"> <h2 style="font-weight: bold; margin-bottom: 3px; font-size: 1.5rem;">How many numbers does the neural network described take as input and output?</h2> <p style="font-weight: normal; font-size: 1.2rem;">It takes in 784 numbers as an input and outputs 10 numbers.</p> </div> <div style="margin-bottom: 10px; background-color: #f2f2f2; border-radius: 1rem; padding: 10px 20px;"> <h2 style="font-weight: bold; margin-bottom: 3px; font-size: 1.5rem;">What does the ReLU function stand for?</h2> <p style="font-weight: normal; font-size: 1.2rem;">ReLU stands for rectified linear unit.</p> </div> <div style="margin-bottom: 10px; background-color: #f2f2f2; border-radius: 1rem; padding: 10px 20px;"> <h2 style="font-weight: bold; margin-bottom: 3px; font-size: 1.5rem;">How many weights are there in the hidden layer of 16 neurons, considering each neuron is connected to all 784 pixel neurons from the first layer?</h2> <p style="font-weight: normal; font-size: 1.2rem;">12,544 (784 times 16).</p> </div> <div style="margin-bottom: 10px; background-color: #f2f2f2; border-radius: 1rem; padding: 10px 20px;"> <h2 style="font-weight: bold; margin-bottom: 3px; font-size: 1.5rem;">Why have modern networks moved away from using the sigmoid function?</h2> <p style="font-weight: normal; font-size: 1.2rem;">Because ReLU is much easier to train compared to sigmoid.</p> </div> <div style="margin-bottom: 10px; background-color: #f2f2f2; border-radius: 1rem; padding: 10px 20px;"> <h2 style="font-weight: bold; margin-bottom: 3px; font-size: 1.5rem;">What is the broader application of detecting edges and patterns beyond image recognition?</h2> <p style="font-weight: normal; font-size: 1.2rem;">It could be useful for other intelligent tasks like parsing speech.</p> </div> <div style="margin-bottom: 10px; background-color: #f2f2f2; border-radius: 1rem; padding: 10px 20px;"> <h2 style="font-weight: bold; margin-bottom: 3px; font-size: 1.5rem;">What is the challenge in designing how activations in one layer influence the next?</h2> <p style="font-weight: normal; font-size: 1.2rem;">Determining a mechanism that can combine pixels into edges, edges into patterns, or patterns into digits.</p> </div> <div style="margin-bottom: 10px; background-color: #f2f2f2; border-radius: 1rem; padding: 10px 20px;"> <h2 style="font-weight: bold; margin-bottom: 3px; font-size: 1.5rem;">What does the process of learning in this context refer to?</h2> <p style="font-weight: normal; font-size: 1.2rem;">Getting the computer to find a valid setting for all the weights and biases to solve the problem at hand.</p> </div> <div style="margin-bottom: 10px; background-color: #f2f2f2; border-radius: 1rem; padding: 10px 20px;"> <h2 style="font-weight: bold; margin-bottom: 3px; font-size: 1.5rem;">How can weights be visualized in the context of influencing neuron activations?</h2> <p style="font-weight: normal; font-size: 1.2rem;">As a grid with green pixels indicating positive weights and red pixels indicating negative weights.</p> </div> </div>
Flashcards From Other Users
Atendimento de Urgência e Emergência
O Direito no Mundo da Cultura
Teoria Geral do Direito
Estudo do Direito: Funções Sociais e Filosofia
Indicadores de Saúde e Mortalidade
Relações Trabalhistas e Sindicais
HomeFeaturesExamsPrivacyTerms

© 2024 Slay School. All rights reserved.