Try  free

Neural Network Weights and Biases

Understanding the role of weights and biases in neural networks and how they contribute to the network's function and learning process.

Click here to study and view all flashcards!
<div style='margin-bottom: 20px;'> <div style="margin-bottom: 10px; background-color: #f2f2f2; border-radius: 1rem; padding: 10px 20px;"> <h2 style="font-weight: bold; margin-bottom: 3px; font-size: 1.5rem;">What is the total number of weights and biases in the network described?</h2> <p style="font-weight: normal; font-size: 1.2rem;">Almost exactly 13,000.</p> </div> <div style="margin-bottom: 10px; background-color: #f2f2f2; border-radius: 1rem; padding: 10px 20px;"> <h2 style="font-weight: bold; margin-bottom: 3px; font-size: 1.5rem;">What does the process of learning in neural networks refer to?</h2> <p style="font-weight: normal; font-size: 1.2rem;">Finding a valid setting for all the weights and biases to solve the problem at hand.</p> </div> <div style="margin-bottom: 10px; background-color: #f2f2f2; border-radius: 1rem; padding: 10px 20px;"> <h2 style="font-weight: bold; margin-bottom: 3px; font-size: 1.5rem;">Why might manually setting weights and biases be considered both fun and horrifying?</h2> <p style="font-weight: normal; font-size: 1.2rem;">Because it involves purposefully tweaking thousands of numbers to achieve desired layer functions.</p> </div> <div style="margin-bottom: 10px; background-color: #f2f2f2; border-radius: 1rem; padding: 10px 20px;"> <h2 style="font-weight: bold; margin-bottom: 3px; font-size: 1.5rem;">How does organizing weight matrices and vectors simplify communication of activations?</h2> <p style="font-weight: normal; font-size: 1.2rem;">It allows for the full transition of activations from one layer to the next to be communicated in an extremely tight and neat little expression.</p> </div> <div style="margin-bottom: 10px; background-color: #f2f2f2; border-radius: 1rem; padding: 10px 20px;"> <h2 style="font-weight: bold; margin-bottom: 3px; font-size: 1.5rem;">What is the purpose of weights in a neural network?</h2> <p style="font-weight: normal; font-size: 1.2rem;">To determine how activations from one layer influence the activations in the next layer.</p> </div> <div style="margin-bottom: 10px; background-color: #f2f2f2; border-radius: 1rem; padding: 10px 20px;"> <h2 style="font-weight: bold; margin-bottom: 3px; font-size: 1.5rem;">How are the weights organized in relation to the activations?</h2> <p style="font-weight: normal; font-size: 1.2rem;">The weights are organized as a matrix, where each row corresponds to the connections between one layer and a particular neuron in the next layer.</p> </div> <div style="margin-bottom: 10px; background-color: #f2f2f2; border-radius: 1rem; padding: 10px 20px;"> <h2 style="font-weight: bold; margin-bottom: 3px; font-size: 1.5rem;">How many weights are there in a hidden layer of 16 neurons connected to 784 pixel neurons?</h2> <p style="font-weight: normal; font-size: 1.2rem;">12,544 (784 times 16).</p> </div> <div style="margin-bottom: 10px; background-color: #f2f2f2; border-radius: 1rem; padding: 10px 20px;"> <h2 style="font-weight: bold; margin-bottom: 3px; font-size: 1.5rem;">How many hidden layers are chosen for the network, and how many neurons do they each have?</h2> <p style="font-weight: normal; font-size: 1.2rem;">Two hidden layers, each with 16 neurons.</p> </div> <div style="margin-bottom: 10px; background-color: #f2f2f2; border-radius: 1rem; padding: 10px 20px;"> <h2 style="font-weight: bold; margin-bottom: 3px; font-size: 1.5rem;">What does a positive input to the sigmoid function result in?</h2> <p style="font-weight: normal; font-size: 1.2rem;">Close to 1.</p> </div> <div style="margin-bottom: 10px; background-color: #f2f2f2; border-radius: 1rem; padding: 10px 20px;"> <h2 style="font-weight: bold; margin-bottom: 3px; font-size: 1.5rem;">What is the network's 'choice' based on the brightest neuron in the output layer?</h2> <p style="font-weight: normal; font-size: 1.2rem;">The digit the image represents</p> </div> <div style="margin-bottom: 10px; background-color: #f2f2f2; border-radius: 1rem; padding: 10px 20px;"> <h2 style="font-weight: bold; margin-bottom: 3px; font-size: 1.5rem;">Why is it significant that the brain can recognize a '3' despite low resolution and varying pixel values?</h2> <p style="font-weight: normal; font-size: 1.2rem;">It demonstrates the brain's remarkable ability to interpret and recognize patterns effortlessly.</p> </div> <div style="margin-bottom: 10px; background-color: #f2f2f2; border-radius: 1rem; padding: 10px 20px;"> <h2 style="font-weight: bold; margin-bottom: 3px; font-size: 1.5rem;">What is the desired outcome when computing a weighted sum of pixel values in the context of neural networks?</h2> <p style="font-weight: normal; font-size: 1.2rem;">The desired outcome is for activations to be some value between 0 and 1.</p> </div> <div style="margin-bottom: 10px; background-color: #f2f2f2; border-radius: 1rem; padding: 10px 20px;"> <h2 style="font-weight: bold; margin-bottom: 3px; font-size: 1.5rem;">What is the primary inspiration behind neural networks?</h2> <p style="font-weight: normal; font-size: 1.2rem;">The brain</p> </div> <div style="margin-bottom: 10px; background-color: #f2f2f2; border-radius: 1rem; padding: 10px 20px;"> <h2 style="font-weight: bold; margin-bottom: 3px; font-size: 1.5rem;">What will be shown in the next video, as mentioned?</h2> <p style="font-weight: normal; font-size: 1.2rem;">How the network learns the appropriate weights and biases just by looking at data, and more about what the network is really doing.</p> </div> <div style="margin-bottom: 10px; background-color: #f2f2f2; border-radius: 1rem; padding: 10px 20px;"> <h2 style="font-weight: bold; margin-bottom: 3px; font-size: 1.5rem;">What analogy is used to explain the process of parsing speech?</h2> <p style="font-weight: normal; font-size: 1.2rem;">Taking raw audio and picking out distinct sounds, which combine to form syllables, words, phrases, and abstract thoughts.</p> </div> <div style="margin-bottom: 10px; background-color: #f2f2f2; border-radius: 1rem; padding: 10px 20px;"> <h2 style="font-weight: bold; margin-bottom: 3px; font-size: 1.5rem;">Which function is commonly used to transform a weighted sum into a value between 0 and 1?</h2> <p style="font-weight: normal; font-size: 1.2rem;">The sigmoid function.</p> </div> <div style="margin-bottom: 10px; background-color: #f2f2f2; border-radius: 1rem; padding: 10px 20px;"> <h2 style="font-weight: bold; margin-bottom: 3px; font-size: 1.5rem;">What does a very negative input to the sigmoid function result in?</h2> <p style="font-weight: normal; font-size: 1.2rem;">Close to 0.</p> </div> <div style="margin-bottom: 10px; background-color: #f2f2f2; border-radius: 1rem; padding: 10px 20px;"> <h2 style="font-weight: bold; margin-bottom: 3px; font-size: 1.5rem;">What does taking the weighted sum of the activations in the first layer represent?</h2> <p style="font-weight: normal; font-size: 1.2rem;">It corresponds to one of the terms in the matrix vector product.</p> </div> <div style="margin-bottom: 10px; background-color: #f2f2f2; border-radius: 1rem; padding: 10px 20px;"> <h2 style="font-weight: bold; margin-bottom: 3px; font-size: 1.5rem;">What example is used to introduce neural networks?</h2> <p style="font-weight: normal; font-size: 1.2rem;">Recognizing handwritten digits.</p> </div> <div style="margin-bottom: 10px; background-color: #f2f2f2; border-radius: 1rem; padding: 10px 20px;"> <h2 style="font-weight: bold; margin-bottom: 3px; font-size: 1.5rem;">How many neurons correspond to the 28x28 pixel input image?</h2> <p style="font-weight: normal; font-size: 1.2rem;">784 neurons</p> </div> <div style="margin-bottom: 10px; background-color: #f2f2f2; border-radius: 1rem; padding: 10px 20px;"> <h2 style="font-weight: bold; margin-bottom: 3px; font-size: 1.5rem;">What do the activations in the neurons of the last layer represent?</h2> <p style="font-weight: normal; font-size: 1.2rem;">How much the system thinks a given image corresponds with a given digit.</p> </div> <div style="margin-bottom: 10px; background-color: #f2f2f2; border-radius: 1rem; padding: 10px 20px;"> <h2 style="font-weight: bold; margin-bottom: 3px; font-size: 1.5rem;">What does the activation of a neuron represent in the context of an input image?</h2> <p style="font-weight: normal; font-size: 1.2rem;">The grayscale value of the corresponding pixel.</p> </div> <div style="margin-bottom: 10px; background-color: #f2f2f2; border-radius: 1rem; padding: 10px 20px;"> <h2 style="font-weight: bold; margin-bottom: 3px; font-size: 1.5rem;">What is the purpose of adding a bias to the weighted sum before applying the sigmoid function?</h2> <p style="font-weight: normal; font-size: 1.2rem;">To determine how high the weighted sum needs to be before the neuron starts getting meaningfully active.</p> </div> <div style="margin-bottom: 10px; background-color: #f2f2f2; border-radius: 1rem; padding: 10px 20px;"> <h2 style="font-weight: bold; margin-bottom: 3px; font-size: 1.5rem;">What does the author want to demonstrate with neural networks?</h2> <p style="font-weight: normal; font-size: 1.2rem;">How a neural network functions, assuming no background knowledge, and to visualize its operations beyond being a buzzword.</p> </div> <div style="margin-bottom: 10px; background-color: #f2f2f2; border-radius: 1rem; padding: 10px 20px;"> <h2 style="font-weight: bold; margin-bottom: 3px; font-size: 1.5rem;">How does ReLU function in terms of activation?</h2> <p style="font-weight: normal; font-size: 1.2rem;">It takes the max of zero and a given value, acting as the identity function if it passes a certain threshold, or zero if it does not.</p> </div> <div style="margin-bottom: 10px; background-color: #f2f2f2; border-radius: 1rem; padding: 10px 20px;"> <h2 style="font-weight: bold; margin-bottom: 3px; font-size: 1.5rem;">What is the resolution of the image used to recognize the digit '3'?</h2> <p style="font-weight: normal; font-size: 1.2rem;">28x28 pixels</p> </div> <div style="margin-bottom: 10px; background-color: #f2f2f2; border-radius: 1rem; padding: 10px 20px;"> <h2 style="font-weight: bold; margin-bottom: 3px; font-size: 1.5rem;">Why is a good grasp of linear algebra important in machine learning?</h2> <p style="font-weight: normal; font-size: 1.2rem;">Much of machine learning comes down to having a good grasp of linear algebra.</p> </div> <div style="margin-bottom: 10px; background-color: #f2f2f2; border-radius: 1rem; padding: 10px 20px;"> <h2 style="font-weight: bold; margin-bottom: 3px; font-size: 1.5rem;">How is the addition of the bias to the matrix vector product represented?</h2> <p style="font-weight: normal; font-size: 1.2rem;">By organizing all the biases into a vector and adding the entire vector to the previous matrix vector product.</p> </div> <div style="margin-bottom: 10px; background-color: #f2f2f2; border-radius: 1rem; padding: 10px 20px;"> <h2 style="font-weight: bold; margin-bottom: 3px; font-size: 1.5rem;">What is the goal of having a layered structure in neural networks?</h2> <p style="font-weight: normal; font-size: 1.2rem;">To break down complex recognition tasks into layers of abstraction.</p> </div> <div style="margin-bottom: 10px; background-color: #f2f2f2; border-radius: 1rem; padding: 10px 20px;"> <h2 style="font-weight: bold; margin-bottom: 3px; font-size: 1.5rem;">What function did early networks use to squish the relevant weighted sum into the interval between zero and one?</h2> <p style="font-weight: normal; font-size: 1.2rem;">The sigmoid function.</p> </div> <div style="margin-bottom: 10px; background-color: #f2f2f2; border-radius: 1rem; padding: 10px 20px;"> <h2 style="font-weight: bold; margin-bottom: 3px; font-size: 1.5rem;">What is suggested for a visual understanding of matrices and matrix vector multiplication?</h2> <p style="font-weight: normal; font-size: 1.2rem;">Taking a look at the series on linear algebra, especially chapter 3.</p> </div> <div style="margin-bottom: 10px; background-color: #f2f2f2; border-radius: 1rem; padding: 10px 20px;"> <h2 style="font-weight: bold; margin-bottom: 3px; font-size: 1.5rem;">What optimization do many libraries provide that benefits machine learning code?</h2> <p style="font-weight: normal; font-size: 1.2rem;">Many libraries optimize matrix multiplication.</p> </div> <div style="margin-bottom: 10px; background-color: #f2f2f2; border-radius: 1rem; padding: 10px 20px;"> <h2 style="font-weight: bold; margin-bottom: 3px; font-size: 1.5rem;">How might the network recognize a digit like '9'?</h2> <p style="font-weight: normal; font-size: 1.2rem;">By recognizing specific little edges that make up the upper loop and a long vertical line.</p> </div> <div style="margin-bottom: 10px; background-color: #f2f2f2; border-radius: 1rem; padding: 10px 20px;"> <h2 style="font-weight: bold; margin-bottom: 3px; font-size: 1.5rem;">What function is wrapped around the matrix vector product as a final step?</h2> <p style="font-weight: normal; font-size: 1.2rem;">A sigmoid function.</p> </div> <div style="margin-bottom: 10px; background-color: #f2f2f2; border-radius: 1rem; padding: 10px 20px;"> <h2 style="font-weight: bold; margin-bottom: 3px; font-size: 1.5rem;">What range of values can a neuron's activation hold?</h2> <p style="font-weight: normal; font-size: 1.2rem;">Between 0 and 1</p> </div> <div style="margin-bottom: 10px; background-color: #f2f2f2; border-radius: 1rem; padding: 10px 20px;"> <h2 style="font-weight: bold; margin-bottom: 3px; font-size: 1.5rem;">How should the activations from one layer be organized for processing?</h2> <p style="font-weight: normal; font-size: 1.2rem;">The activations from one layer should be organized into a column as a vector.</p> </div> <div style="margin-bottom: 10px; background-color: #f2f2f2; border-radius: 1rem; padding: 10px 20px;"> <h2 style="font-weight: bold; margin-bottom: 3px; font-size: 1.5rem;">What benefit does understanding weights and biases offer when a network doesn't perform as expected?</h2> <p style="font-weight: normal; font-size: 1.2rem;">It provides a starting place for experimenting with changes to improve the structure.</p> </div> <div style="margin-bottom: 10px; background-color: #f2f2f2; border-radius: 1rem; padding: 10px 20px;"> <h2 style="font-weight: bold; margin-bottom: 3px; font-size: 1.5rem;">What function has become more popular than sigmoid in modern networks?</h2> <p style="font-weight: normal; font-size: 1.2rem;">ReLU (rectified linear unit).</p> </div> <div style="margin-bottom: 10px; background-color: #f2f2f2; border-radius: 1rem; padding: 10px 20px;"> <h2 style="font-weight: bold; margin-bottom: 3px; font-size: 1.5rem;">How does the network determine the activations of the next layer?</h2> <p style="font-weight: normal; font-size: 1.2rem;">Activations in one layer determine the activations of the next layer.</p> </div> <div style="margin-bottom: 10px; background-color: #f2f2f2; border-radius: 1rem; padding: 10px 20px;"> <h2 style="font-weight: bold; margin-bottom: 3px; font-size: 1.5rem;">Why is it reassuring that the network looks complicated?</h2> <p style="font-weight: normal; font-size: 1.2rem;">If it were any simpler, there would be little hope that it could take on the challenge of recognizing digits.</p> </div> <div style="margin-bottom: 10px; background-color: #f2f2f2; border-radius: 1rem; padding: 10px 20px;"> <h2 style="font-weight: bold; margin-bottom: 3px; font-size: 1.5rem;">What does ReLU stand for?</h2> <p style="font-weight: normal; font-size: 1.2rem;">Rectified Linear Unit.</p> </div> <div style="margin-bottom: 10px; background-color: #f2f2f2; border-radius: 1rem; padding: 10px 20px;"> <h2 style="font-weight: bold; margin-bottom: 3px; font-size: 1.5rem;">Why did the use of sigmoids become less favorable for training networks?</h2> <p style="font-weight: normal; font-size: 1.2rem;">Sigmoids were difficult to train at some point, and ReLU happened to work very well for incredibly deep neural networks.</p> </div> <div style="margin-bottom: 10px; background-color: #f2f2f2; border-radius: 1rem; padding: 10px 20px;"> <h2 style="font-weight: bold; margin-bottom: 3px; font-size: 1.5rem;">How can a neuron in the second layer be made to detect an edge in a specific region?</h2> <p style="font-weight: normal; font-size: 1.2rem;">By assigning positive weights to connections in the region of interest and computing their weighted sum.</p> </div> <div style="margin-bottom: 10px; background-color: #f2f2f2; border-radius: 1rem; padding: 10px 20px;"> <h2 style="font-weight: bold; margin-bottom: 3px; font-size: 1.5rem;">How can neurons be more accurately thought of, according to the text?</h2> <p style="font-weight: normal; font-size: 1.2rem;">As functions that take in the outputs of all the neurons in the previous layer and spit out a number between 0 and 1.</p> </div> <div style="margin-bottom: 10px; background-color: #f2f2f2; border-radius: 1rem; padding: 10px 20px;"> <h2 style="font-weight: bold; margin-bottom: 3px; font-size: 1.5rem;">What does the entire network function as?</h2> <p style="font-weight: normal; font-size: 1.2rem;">A function that takes in 784 numbers as an input and spits out 10 numbers as an output.</p> </div> <div style="margin-bottom: 10px; background-color: #f2f2f2; border-radius: 1rem; padding: 10px 20px;"> <h2 style="font-weight: bold; margin-bottom: 3px; font-size: 1.5rem;">What makes the network's function complicated?</h2> <p style="font-weight: normal; font-size: 1.2rem;">It involves 13,000 parameters in the forms of weights and biases, picks up on certain patterns, and involves iterating many matrix vector products and the sigmoid function.</p> </div> <div style="margin-bottom: 10px; background-color: #f2f2f2; border-radius: 1rem; padding: 10px 20px;"> <h2 style="font-weight: bold; margin-bottom: 3px; font-size: 1.5rem;">What subcomponents might the neurons in the second to last layer correspond to?</h2> <p style="font-weight: normal; font-size: 1.2rem;">Specific parts of digits, like a loop or a line.</p> </div> <div style="margin-bottom: 10px; background-color: #f2f2f2; border-radius: 1rem; padding: 10px 20px;"> <h2 style="font-weight: bold; margin-bottom: 3px; font-size: 1.5rem;">What is the purpose of subscribing to the channel, as suggested?</h2> <p style="font-weight: normal; font-size: 1.2rem;">So that the neural networks that underlie YouTube's recommendation algorithm are primed to believe that you want to see content from this channel get recommended to you.</p> </div> </div>
Flashcards From Other Users
Atendimento de Urgência e Emergência
O Direito no Mundo da Cultura
Teoria Geral do Direito
Estudo do Direito: Funções Sociais e Filosofia
Indicadores de Saúde e Mortalidade
Relações Trabalhistas e Sindicais
HomeFeaturesExamsPrivacyTerms

© 2024 Slay School. All rights reserved.